■ CharacterTextSplitter 클래스의 from_huggingface_tokenizer 정적 메소드를 사용해 CharacterTextSplitter 객체를 만드는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
from transformers import GPT2TokenizerFast from langchain_text_splitters import CharacterTextSplitter with open("appendix-keywords.txt") as textIOWrapper: fileContent = textIOWrapper.read() gpt2TokenizerFast = GPT2TokenizerFast.from_pretrained("gpt2") characterTextSplitter = CharacterTextSplitter.from_huggingface_tokenizer( gpt2TokenizerFast, chunk_size = 300, chunk_overlap = 50 ) textList = characterTextSplitter.split_text(fileContent) print(len(textList)) """ 51 """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
annotated-types==0.7.0 anyio==4.8.0 certifi==2024.12.14 charset-normalizer==3.4.1 exceptiongroup==1.2.2 filelock==3.16.1 fsspec==2024.12.0 h11==0.14.0 httpcore==1.0.7 httpx==0.28.1 huggingface-hub==0.27.1 idna==3.10 jsonpatch==1.33 jsonpointer==3.0.0 langchain-core==0.3.29 langchain-text-splitters==0.3.5 langsmith==0.2.10 numpy==2.2.1 orjson==3.10.14 packaging==24.2 pydantic==2.10.5 pydantic_core==2.27.2 PyYAML==6.0.2 regex==2024.11.6 requests==2.32.3 requests-toolbelt==1.0.0 safetensors==0.5.2 sniffio==1.3.1 tenacity==9.0.0 tokenizers==0.21.0 tqdm==4.67.1 transformers==4.48.0 typing_extensions==4.12.2 urllib3==2.3.0 |
※ pip install langchain-text-splitters transformers 명령을 실행했다.