■ RunnableLambda 클래스를 사용해 커스텀 함수를 만드는 방법을 보여준다.
※ OPENAI_API_KEY 환경 변수 값은 .env 파일에 정의한다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
from operator import itemgetter from dotenv import load_dotenv from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnableLambda from langchain_openai import ChatOpenAI load_dotenv() def getStringLength(text): return len(text) def multiplyStringLengths(text1, text2): return len(text1) * len(text2) def multiplyStringLengthsFromDictionary(dictionary): return multiplyStringLengths(dictionary["text1"], dictionary["text2"]) chatOpenAI = ChatOpenAI() chatPromptTemplate = ChatPromptTemplate.from_template("what is {a} + {b}") runnableSequence = ( { "a" : itemgetter("foo") | RunnableLambda(getStringLength), "b" : {"text1" : itemgetter("foo"), "text2" : itemgetter("bar")} | RunnableLambda(multiplyStringLengthsFromDictionary), } | chatPromptTemplate | chatOpenAI ) responseAIMessage = runnableSequence.invoke({"foo" : "bar", "bar" : "gah"}) print(responseAIMessage) """ content = '3 + 9 = 12' response_metadata = { 'token_usage' : {completion_tokens' : 7, 'prompt_tokens' : 14, 'total_tokens' : 21}, 'model_name' : 'gpt-3.5-turbo', 'system_fingerprint' : None, 'finish_reason' : 'stop', 'logprobs' : None } id = 'run-c93ab559-db3d-4ff7-828d-15d27444b606-0' usage_metadata = {'input_tokens' : 14, 'output_tokens' : 7, 'total_tokens' : 21} """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
aiohttp==3.9.5 aiosignal==1.3.1 annotated-types==0.7.0 anyio==4.4.0 async-timeout==4.0.3 attrs==23.2.0 certifi==2024.6.2 charset-normalizer==3.3.2 distro==1.9.0 exceptiongroup==1.2.1 frozenlist==1.4.1 greenlet==3.0.3 h11==0.14.0 httpcore==1.0.5 httpx==0.27.0 idna==3.7 jsonpatch==1.33 jsonpointer==3.0.0 langchain==0.2.5 langchain-core==0.2.9 langchain-openai==0.1.8 langchain-text-splitters==0.2.1 langsmith==0.1.81 multidict==6.0.5 numpy==1.26.4 openai==1.35.3 orjson==3.10.5 packaging==24.1 pydantic==2.7.4 pydantic_core==2.18.4 python-dotenv==1.0.1 PyYAML==6.0.1 regex==2024.5.15 requests==2.32.3 sniffio==1.3.1 SQLAlchemy==2.0.31 tenacity==8.4.1 tiktoken==0.7.0 tqdm==4.66.4 typing_extensions==4.12.2 urllib3==2.2.2 yarl==1.9.4 |
※ pip install python-dotenv langchain langchain_openai 명령을 실행했다.