■ LengthBasedExampleSelector 클래스를 사용해 길이 기반 예제 선택기를 설정하는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
from langchain_core.prompts import PromptTemplate from langchain_core.example_selectors import LengthBasedExampleSelector from langchain_core.prompts import FewShotPromptTemplate exampleDictionaryList = [ {"input" : "happy" , "output" : "sad" }, {"input" : "tall" , "output" : "short" }, {"input" : "energetic", "output" : "lethargic"}, {"input" : "sunny" , "output" : "gloomy" }, {"input" : "windy" , "output" : "calm" } ] examplePromptTemplate = PromptTemplate( input_variables = ["input", "output"], template = "Input : {input}\nOutput : {output}" ) lengthBasedExampleSelector = LengthBasedExampleSelector( # 선택할 수 있는 예제이다. examples = exampleDictionaryList, # 예제의 형식을 지정하는 데 사용되는 PromptTemplate이다. example_prompt = examplePromptTemplate, # 형식화된 예제의 최대 길이이다. # 길이는 아래의 get_text_length 함수로 측정된다. max_length = 25, # 포함할 예제를 결정하는 데 사용되는 문자열의 길이를 가져오는 데 사용되는 함수이다. # 지정하지 않은 경우 기본값으로 제공되므로 주석 처리된다. # get_text_length : Callable[[str], int] = lambda x : len(re.split("\n| ", x)) ) fewShotPromptTemplate = FewShotPromptTemplate( example_selector = lengthBasedExampleSelector, example_prompt = examplePromptTemplate, prefix = "Give the antonym of every input", suffix = "Input : {adjective}\nOutput :", input_variables = ["adjective"] ) promptString1 = fewShotPromptTemplate.format(adjective = "big") print(promptString1) """ Give the antonym of every input Input: happy Output: sad Input: tall Output: short Input: energetic Output: lethargic Input: sunny Output: gloomy Input: windy Output: calm Input: big Output: """ promptString2 = fewShotPromptTemplate.format(adjective = "big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else") print(promptString2) """ Give the antonym of every input Input: happy Output: sad Input: big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else Output: """ new_example = {"input" : "big", "output" : "small"} fewShotPromptTemplate.example_selector.add_example(new_example) promptString3 = fewShotPromptTemplate.format(adjective = "enthusiastic") print(promptString3) """ Give the antonym of every input Input: happy Output: sad Input: tall Output: short Input: energetic Output: lethargic Input: sunny Output: gloomy Input: windy Output: calm Input: big Output: small Input: enthusiastic Output: """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
aiohttp==3.9.5 aiosignal==1.3.1 annotated-types==0.7.0 async-timeout==4.0.3 attrs==23.2.0 certifi==2024.6.2 charset-normalizer==3.3.2 frozenlist==1.4.1 greenlet==3.0.3 idna==3.7 jsonpatch==1.33 jsonpointer==3.0.0 langchain==0.2.5 langchain-core==0.2.9 langchain-text-splitters==0.2.1 langsmith==0.1.81 multidict==6.0.5 numpy==1.26.4 orjson==3.10.5 packaging==24.1 pydantic==2.7.4 pydantic_core==2.18.4 PyYAML==6.0.1 requests==2.32.3 SQLAlchemy==2.0.31 tenacity==8.4.1 typing_extensions==4.12.2 urllib3==2.2.2 yarl==1.9.4 |
※ pip install langchain 명령을 실행했다.