■ OnnxEmbeddingFunction 클래스의 encode_queries 메소드를 사용해 쿼리 벡터 리스트를 만드는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 |
from pymilvus import model onnxEmbeddingFunction = model.DefaultEmbeddingFunction() queryVectorList = onnxEmbeddingFunction.encode_queries(["Who is Alan Turing?"]) # NDArray list |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
certifi==2024.8.30 charset-normalizer==3.3.2 coloredlogs==15.0.1 environs==9.5.0 filelock==3.16.1 flatbuffers==24.3.25 fsspec==2024.9.0 grpcio==1.66.2 huggingface-hub==0.25.1 humanfriendly==10.0 idna==3.10 marshmallow==3.22.0 milvus-lite==2.4.10 milvus-model==0.2.7 mpmath==1.3.0 numpy==2.1.2 onnxruntime==1.19.2 packaging==24.1 pandas==2.2.3 protobuf==5.28.2 pymilvus==2.4.7 python-dateutil==2.9.0.post0 python-dotenv==1.0.1 pytz==2024.2 PyYAML==6.0.2 regex==2024.9.11 requests==2.32.3 safetensors==0.4.5 scipy==1.14.1 six==1.16.0 sympy==1.13.3 tokenizers==0.20.0 tqdm==4.66.5 transformers==4.45.1 typing_extensions==4.12.2 tzdata==2024.2 ujson==5.10.0 urllib3==2.2.3 |
※ pip install pymilvus[model] 명령을 실행했다.