■ load 함수를 사용해 SON 직렬화 가능 딕셔너리에서 RunnableSequence 객체를 만드는 방법을 보여준다.
※ OPENAI_API_KEY 환경 변수 값은 .env 파일에 정의한다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import os from dotenv import load_dotenv from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from langchain_core.load import dumpd from langchain_core.load import load load_dotenv() chatPromptTemplate = ChatPromptTemplate.from_messages( [ ("system", "Translate the following text into {language} :"), ("user" , "{text}") ] ) chatOpenAI = ChatOpenAI( model = "gpt-4", temperature = 0.7 ) runnableSequence1 = chatPromptTemplate | chatOpenAI jsonSerizableDictionary = dumpd(runnableSequence1) runnableSequence2 = load(jsonSerizableDictionary, secrets_map = {"OPENAI_API_KEY" : os.environ["OPENAI_API_KEY"]}) try: responseAIMessage = runnableSequence2.invoke( { "language": "Korean", "text": "I am a student" } ) print("번역 결과 :", responseAIMessage.content) except Exception as exception: print(f"오류 발생 : {str(exception)}") """ 번역 결과 : 저는 학생입니다. """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
annotated-types==0.7.0 anyio==4.6.2.post1 certifi==2024.8.30 charset-normalizer==3.4.0 colorama==0.4.6 distro==1.9.0 h11==0.14.0 httpcore==1.0.7 httpx==0.27.2 idna==3.10 jiter==0.7.1 jsonpatch==1.33 jsonpointer==3.0.0 langchain-core==0.3.21 langchain-openai==0.2.9 langsmith==0.1.146 openai==1.55.1 orjson==3.10.12 packaging==24.2 pydantic==2.10.1 pydantic_core==2.27.1 python-dotenv==1.0.1 PyYAML==6.0.2 regex==2024.11.6 requests==2.32.3 requests-toolbelt==1.0.0 sniffio==1.3.1 tenacity==9.0.0 tiktoken==0.8.0 tqdm==4.67.1 typing_extensions==4.12.2 urllib3==2.2.3 |
※ install python-dotenv langchain-openai 명령을 실행했다.