■ ChatPromptTemplate 클래스의 partial 메소드를 사용해 매개 변수 값을 설정하고 새로운 ChatPromptTemplate 객체를 만드는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
from pydantic import BaseModel from pydantic import Field from typing import List from langchain_core.output_parsers import PydanticOutputParser from langchain_core.prompts import ChatPromptTemplate class Person(BaseModel): """Information about a person.""" name : str = Field(..., description = "The name of the person" ) height_in_meters : float = Field(..., description = "The height of the person expressed in meters.") class People(BaseModel): """Identifying information about all people in a text.""" people : List[Person] pydanticOutputParser = PydanticOutputParser(pydantic_object = People) chatPromptTemplate1 = ChatPromptTemplate.from_messages( [ ("system", "Answer the user query. Wrap the output in `json` tags\n{format_instructions}"), ("human" , "{query}") ] ) chatPromptTemplate2 = chatPromptTemplate1.partial(format_instructions = pydanticOutputParser.get_format_instructions()) |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
aiohappyeyeballs==2.4.4 aiohttp==3.11.10 aiosignal==1.3.1 annotated-types==0.7.0 anyio==4.7.0 attrs==24.2.0 certifi==2024.8.30 charset-normalizer==3.4.0 frozenlist==1.5.0 greenlet==3.1.1 h11==0.14.0 httpcore==1.0.7 httpx==0.28.1 idna==3.10 jsonpatch==1.33 jsonpointer==3.0.0 langchain==0.3.10 langchain-core==0.3.22 langchain-text-splitters==0.3.2 langsmith==0.1.147 multidict==6.1.0 numpy==2.1.3 orjson==3.10.12 packaging==24.2 propcache==0.2.1 pydantic==2.10.3 pydantic_core==2.27.1 PyYAML==6.0.2 requests==2.32.3 requests-toolbelt==1.0.0 sniffio==1.3.1 SQLAlchemy==2.0.36 tenacity==9.0.0 typing_extensions==4.12.2 urllib3==2.2.3 yarl==1.18.3 |
※ pip install langchain 명령을 실행했다.