■ CompiledStateGraph 클래스의 astream 메소드를 사용해 반복적 정제를 통한 텍스트를 요약하는 방법을 보여준다.
※ OPENAI_API_KEY 환경 변수 값은 .env 파일에 정의한다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import asyncio from dotenv import load_dotenv from langchain_core.documents import Document from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from langchain_core.output_parsers import StrOutputParser from typing import TypedDict from typing import List from langchain_core.runnables import RunnableConfig from typing import Literal from langgraph.graph import END from langgraph.graph import StateGraph from langgraph.graph import START load_dotenv() documentList = [ Document(page_content = "Apples are red" , metadata = {"title" : "apple_book" }), Document(page_content = "Blueberries are blue", metadata = {"title" : "blueberry_book"}), Document(page_content = "Bananas are yelow" , metadata = {"title" : "banana_book" }) ] summarizeChatPromptTemplate = ChatPromptTemplate([("human", "Write a concise summary of the following : {context}")]) chatOpenAI = ChatOpenAI(model = "gpt-4o-mini") summarizeRunnableSequence = summarizeChatPromptTemplate | chatOpenAI | StrOutputParser() refineChatPromptTemplateString = """ Produce a final summary. Existing summary up to this point: {existing_answer} New context: ------------ {context} ------------ Given the new context, refine the original summary. """ refineChatPromptTemplate = ChatPromptTemplate([("human", refineChatPromptTemplateString)]) refineRunnableSequence = refineChatPromptTemplate | chatOpenAI | StrOutputParser() class State(TypedDict): contentList : List[str] index : int summary : str async def generateInitialSummary(state : State, config : RunnableConfig): responseString = await summarizeRunnableSequence.ainvoke(state["contentList"][0], config) return {"summary" : responseString, "index" : 1} async def refineSummary(state : State, config : RunnableConfig): content = state["contentList"][state["index"]] responseString = await refineRunnableSequence.ainvoke({"existing_answer" : state["summary"], "context" : content}, config) return {"summary" : responseString, "index" : state["index"] + 1} def shouldRefine(state : State) -> Literal["refine_summary", END]: if state["index"] >= len(state["contentList"]): return END else: return "refine_summary" stateGraph = StateGraph(State) stateGraph.add_node("generate_initial_summary", generateInitialSummary) stateGraph.add_node("refine_summary" , refineSummary ) stateGraph.add_edge(START, "generate_initial_summary") stateGraph.add_conditional_edges("generate_initial_summary", shouldRefine) stateGraph.add_conditional_edges("refine_summary" , shouldRefine) compiledStateGraph = stateGraph.compile() async def main(): async for addableUpdatesDict in compiledStateGraph.astream({"contentList" : [documentList.page_content for documentList in documentList]}, stream_mode = "values"): if summary := addableUpdatesDict .get("summary"): print(summary) asyncio.run(main()) """ Apples are typically red in color. Apples are typically red in color, while blueberries are blue. Apples are typically red in color, blueberries are blue, and bananas are yellow. """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
aiohappyeyeballs==2.4.4 aiohttp==3.11.11 aiosignal==1.3.2 annotated-types==0.7.0 anyio==4.7.0 attrs==24.3.0 beautifulsoup4==4.12.3 bs4==0.0.2 certifi==2024.12.14 charset-normalizer==3.4.0 colorama==0.4.6 dataclasses-json==0.6.7 distro==1.9.0 frozenlist==1.5.0 greenlet==3.1.1 h11==0.14.0 httpcore==1.0.7 httpx==0.28.1 httpx-sse==0.4.0 idna==3.10 jiter==0.8.2 jsonpatch==1.33 jsonpointer==3.0.0 langchain==0.3.13 langchain-community==0.3.13 langchain-core==0.3.28 langchain-openai==0.2.14 langchain-text-splitters==0.3.4 langgraph==0.2.60 langgraph-checkpoint==2.0.9 langgraph-sdk==0.1.48 langsmith==0.2.4 marshmallow==3.23.2 msgpack==1.1.0 multidict==6.1.0 mypy-extensions==1.0.0 numpy==2.2.1 openai==1.58.1 orjson==3.10.12 packaging==24.2 propcache==0.2.1 pydantic==2.10.4 pydantic-settings==2.7.0 pydantic_core==2.27.2 python-dotenv==1.0.1 PyYAML==6.0.2 regex==2024.11.6 requests==2.32.3 requests-toolbelt==1.0.0 sniffio==1.3.1 soupsieve==2.6 SQLAlchemy==2.0.36 tenacity==9.0.0 tiktoken==0.8.0 tqdm==4.67.1 typing-inspect==0.9.0 typing_extensions==4.12.2 urllib3==2.3.0 yarl==1.18.3 |
※ pip install python-dotenv langchain langchain-community langchain-openai langgraph bs4 명령을 실행했다.