■ CharacterTextSplitter 클래스의 from_huggingface_tokenizer 메소드를 사용해 CharacterTextSplitter 객체를 만드는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 8 |
from transformers import GPT2TokenizerFast from langchain_text_splitters import CharacterTextSplitter gpt2TokenizerFast = GPT2TokenizerFast.from_pretrained("gpt2") characterTextSplitter = CharacterTextSplitter.from_huggingface_tokenizer(gpt2TokenizerFast, chunk_size = 100, chunk_overlap = 0) |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
annotated-types==0.7.0 certifi==2024.6.2 charset-normalizer==3.3.2 filelock==3.15.4 fsspec==2024.6.1 huggingface-hub==0.23.4 idna==3.7 jsonpatch==1.33 jsonpointer==3.0.0 langchain-core==0.2.10 langchain-text-splitters==0.2.2 langsmith==0.1.82 numpy==1.26.4 orjson==3.10.5 packaging==24.1 pydantic==2.7.4 pydantic_core==2.18.4 PyYAML==6.0.1 regex==2024.5.15 requests==2.32.3 safetensors==0.4.3 tenacity==8.4.2 tokenizers==0.19.1 tqdm==4.66.4 transformers==4.42.3 typing_extensions==4.12.2 urllib3==2.2.2 |
※ pip install langchain-text-splitters transformers 명령을 실행했다.