■ Ollama 클래스를 사용해 텍스트를 생성하는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 |
from langchain_community.llms import Ollama ollama = Ollama( model = "llama3.1:8b-instruct-q2_K", temperature = 0.7, repeat_penalty = 1.3 ) responseString = ollama.invoke("python으로 시간을 출력하는 코드를 만들어주세요.") print(responseString) |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
aiohappyeyeballs==2.4.0 aiohttp==3.10.5 aiosignal==1.3.1 annotated-types==0.7.0 anyio==4.6.0 attrs==24.2.0 certifi==2024.8.30 charset-normalizer==3.3.2 dataclasses-json==0.6.7 frozenlist==1.4.1 greenlet==3.1.1 h11==0.14.0 httpcore==1.0.5 httpx==0.27.2 idna==3.10 jsonpatch==1.33 jsonpointer==3.0.0 langchain==0.3.0 langchain-community==0.3.0 langchain-core==0.3.5 langchain-text-splitters==0.3.0 langsmith==0.1.125 marshmallow==3.22.0 multidict==6.1.0 mypy-extensions==1.0.0 numpy==1.26.4 orjson==3.10.7 packaging==24.1 pydantic==2.9.2 pydantic-settings==2.5.2 pydantic_core==2.23.4 python-dotenv==1.0.1 PyYAML==6.0.2 requests==2.32.3 sniffio==1.3.1 SQLAlchemy==2.0.35 tenacity==8.5.0 typing-inspect==0.9.0 typing_extensions==4.12.2 urllib3==2.2.3 yarl==1.11.1 |
※ pip install langchain-community 명령을 실행했다.