■ VectorStoreIndex 클래스의 as_query_engine 메소드를 사용해 RetrieverQueryEngine 객체를 만드는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
import os from llama_index.core import download_loader, GPTVectorStoreIndex os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>" BeautifulSoupWebReader = download_loader("BeautifulSoupWebReader") beautifulSoupWebReader = BeautifulSoupWebReader() documentList = beautifulSoupWebReader.load_data(urls = ["https://openai.com/blog/planning-for-agi-and-beyond"]) vectorStoreIndex = GPTVectorStoreIndex.from_documents(documentList) retrieverQueryEngine = vectorStoreIndex.as_query_engine() |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
aiohttp==3.9.5 aiosignal==1.3.1 annotated-types==0.7.0 anyio==4.4.0 async-timeout==4.0.3 attrs==23.2.0 beautifulsoup4==4.12.3 certifi==2024.6.2 charset-normalizer==3.3.2 chromedriver-autoinstaller==0.6.4 click==8.1.7 cssselect==1.2.0 dataclasses-json==0.6.6 Deprecated==1.2.14 dirtyjson==1.0.8 distro==1.9.0 exceptiongroup==1.2.1 feedfinder2==0.0.4 feedparser==6.0.11 filelock==3.14.0 frozenlist==1.4.1 fsspec==2024.6.0 greenlet==3.0.3 h11==0.14.0 html2text==2020.1.16 httpcore==1.0.5 httpx==0.27.0 idna==3.7 jieba3k==0.35.1 joblib==1.4.2 jsonpatch==1.33 jsonpointer==2.4 langchain==0.2.3 langchain-core==0.2.5 langchain-text-splitters==0.2.1 langsmith==0.1.75 llama-index==0.10.43 llama-index-agent-openai==0.2.7 llama-index-cli==0.1.12 llama-index-core==0.10.43 llama-index-embeddings-openai==0.1.10 llama-index-indices-managed-llama-cloud==0.1.6 llama-index-legacy==0.9.48 llama-index-llms-openai==0.1.22 llama-index-multi-modal-llms-openai==0.1.6 llama-index-program-openai==0.1.6 llama-index-question-gen-openai==0.1.3 llama-index-readers-file==0.1.23 llama-index-readers-llama-parse==0.1.4 llama-index-readers-web==0.1.18 llama-parse==0.4.4 llamaindex-py-client==0.1.19 lxml==5.2.2 marshmallow==3.21.3 multidict==6.0.5 mypy-extensions==1.0.0 nest-asyncio==1.6.0 networkx==3.3 newspaper3k==0.2.8 nltk==3.8.1 numpy==1.26.4 openai==1.33.0 orjson==3.10.3 outcome==1.3.0.post0 packaging==23.2 pandas==2.2.2 pillow==10.3.0 playwright==1.44.0 pydantic==2.7.3 pydantic_core==2.18.4 pyee==11.1.0 pypdf==4.2.0 PySocks==1.7.1 python-dateutil==2.9.0.post0 pytz==2024.1 PyYAML==6.0.1 regex==2024.5.15 requests==2.32.3 requests-file==2.1.0 selenium==4.21.0 sgmllib3k==1.0.0 six==1.16.0 sniffio==1.3.1 sortedcontainers==2.4.0 soupsieve==2.5 spider-client==0.0.11 SQLAlchemy==2.0.30 striprtf==0.0.26 tenacity==8.3.0 tiktoken==0.7.0 tinysegmenter==0.3 tldextract==5.1.2 tqdm==4.66.4 trio==0.25.1 trio-websocket==0.11.1 typing-inspect==0.9.0 typing_extensions==4.12.2 tzdata==2024.1 urllib3==2.2.1 wrapt==1.16.0 wsproto==1.2.0 yarl==1.9.4 |
※ pip install openai langchain llama-index 명령을 실행했다.