■ | 연산자를 사용해 프롬프트 템플리트와 LLM 모델의 체인을 만드는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import os from langchain.prompts import PromptTemplate from langchain_openai import OpenAI os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>" promptTemplate = PromptTemplate( input_variables = ["product"], template = "{product}을 만드는 새로운 한국어 회사명을 하나 제안해 주세요." ) openAI = OpenAI(temperature = 0.9) runnableSequence = promptTemplate | openAI resultString = runnableSequence.invoke("가정용 로봇") print(resultString) """ "홈로봇즈" """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
aiohttp==3.9.5 aiosignal==1.3.1 annotated-types==0.7.0 async-timeout==4.0.3 attrs==23.2.0 certifi==2024.6.2 charset-normalizer==3.3.2 frozenlist==1.4.1 greenlet==3.0.3 idna==3.7 jsonpatch==1.33 jsonpointer==2.4 langchain==0.2.3 langchain-core==0.2.5 langchain-text-splitters==0.2.1 langsmith==0.1.75 multidict==6.0.5 numpy==1.26.4 orjson==3.10.3 packaging==23.2 pydantic==2.7.3 pydantic_core==2.18.4 PyYAML==6.0.1 requests==2.32.3 SQLAlchemy==2.0.30 tenacity==8.3.0 typing_extensions==4.12.2 urllib3==2.2.1 yarl==1.9.4 |
※ pip install openai langchain langchain-openai 명령을 실행했다.