■ StrOutputParser 클래스의 invoke 메소드를 사용해 출력 결과를 파싱하는 방법을 보여준다.
※ StrOutputParser 클래스는 AIMessageChunk에서 content 필드를 추출하여 모델이 반환한 토큰을 제공하는 간단한 파서이다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import os from langchain_core.messages import SystemMessage from langchain_core.messages import HumanMessage from langchain_openai import ChatOpenAI from langchain_core.output_parsers import StrOutputParser os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>" messageList = [ SystemMessage(content = "Translate the following from English into Korean"), HumanMessage (content = "hi!") ] chatOpenAI = ChatOpenAI(model = "gpt-4") aiMessage = chatOpenAI.invoke(messageList) strOutputParser = StrOutputParser() resultString = strOutputParser.invoke(aiMessage) print(resultString) """ 안녕! """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
aiohttp==3.9.5 aiosignal==1.3.1 annotated-types==0.7.0 anyio==4.4.0 async-timeout==4.0.3 attrs==23.2.0 certifi==2024.6.2 charset-normalizer==3.3.2 distro==1.9.0 exceptiongroup==1.2.1 frozenlist==1.4.1 greenlet==3.0.3 h11==0.14.0 httpcore==1.0.5 httpx==0.27.0 idna==3.7 jsonpatch==1.33 jsonpointer==2.4 langchain==0.2.3 langchain-core==0.2.5 langchain-openai==0.1.8 langchain-text-splitters==0.2.1 langsmith==0.1.75 multidict==6.0.5 numpy==1.26.4 openai==1.33.0 orjson==3.10.3 packaging==23.2 pydantic==2.7.3 pydantic_core==2.18.4 PyYAML==6.0.1 regex==2024.5.15 requests==2.32.3 sniffio==1.3.1 SQLAlchemy==2.0.30 tenacity==8.3.0 tiktoken==0.7.0 tqdm==4.66.4 typing_extensions==4.12.2 urllib3==2.2.1 yarl==1.9.4 |
※ pip install langchain langchain-openai 명령을 실행했다.