[PYTHON/LANGCHAIN] HuggingFaceEmbeddings 클래스 : 생성자에서 model_name 인자를 사용해 HuggingFaceEmbeddings 객체 만들기
■ HuggingFaceEmbeddings 클래스의 생성자에서 model_name 인자를 사용해 HuggingFaceEmbeddings 객체를 만드는 방법을 보여준다. ▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma huggingFaceEmbeddings = HuggingFaceEmbeddings(model_name = "all-MiniLM-L6-v2") textList = [ "Basquetball is a great sport.", "Fly me to the moon is one of my favourite songs.", "The Celtics are my favourite team.", "This is a document about the Boston Celtics", "I simply love going to the movies", "The Boston Celtics won the game by 20 points", "This is just a random text.", "Elden Ring is one of the best games in the last 15 years.", "L. Kornet is one of the best Celtics players.", "Larry Bird was an iconic NBA player.", ] chroma = Chroma.from_texts(textList, embedding = huggingFaceEmbeddings) vectorStoreRetriever = chroma.as_retriever(search_kwargs = {"k" : 10}) documentList = vectorStoreRetriever.invoke("What can you tell me about the Celtics?") for document in documentList: print(document.page_content) |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
annotated-types==0.7.0 anyio==4.4.0 asgiref==3.8.1 backoff==2.2.1 bcrypt==4.2.0 build==1.2.2 cachetools==5.5.0 certifi==2024.8.30 charset-normalizer==3.3.2 chroma-hnswlib==0.7.3 chromadb==0.5.3 click==8.1.7 colorama==0.4.6 coloredlogs==15.0.1 Deprecated==1.2.14 distro==1.9.0 fastapi==0.114.1 filelock==3.16.0 flatbuffers==24.3.25 fsspec==2024.9.0 google-auth==2.34.0 googleapis-common-protos==1.65.0 grpcio==1.66.1 h11==0.14.0 httpcore==1.0.5 httptools==0.6.1 httpx==0.27.2 huggingface-hub==0.24.7 humanfriendly==10.0 idna==3.8 importlib_metadata==8.4.0 importlib_resources==6.4.5 Jinja2==3.1.4 jiter==0.5.0 joblib==1.4.2 jsonpatch==1.33 jsonpointer==3.0.0 kubernetes==30.1.0 langchain-chroma==0.1.3 langchain-core==0.2.39 langchain-huggingface==0.0.3 langchain-openai==0.1.23 langsmith==0.1.120 markdown-it-py==3.0.0 MarkupSafe==2.1.5 mdurl==0.1.2 mmh3==4.1.0 monotonic==1.6 mpmath==1.3.0 networkx==3.3 numpy==1.26.4 oauthlib==3.2.2 onnxruntime==1.19.2 openai==1.45.0 opentelemetry-api==1.27.0 opentelemetry-exporter-otlp-proto-common==1.27.0 opentelemetry-exporter-otlp-proto-grpc==1.27.0 opentelemetry-instrumentation==0.48b0 opentelemetry-instrumentation-asgi==0.48b0 opentelemetry-instrumentation-fastapi==0.48b0 opentelemetry-proto==1.27.0 opentelemetry-sdk==1.27.0 opentelemetry-semantic-conventions==0.48b0 opentelemetry-util-http==0.48b0 orjson==3.10.7 overrides==7.7.0 packaging==24.1 pillow==10.4.0 posthog==3.6.5 protobuf==4.25.4 pyasn1==0.6.1 pyasn1_modules==0.4.1 pydantic==2.9.1 pydantic_core==2.23.3 Pygments==2.18.0 PyPika==0.48.9 pyproject_hooks==1.1.0 pyreadline3==3.4.3 python-dateutil==2.9.0.post0 python-dotenv==1.0.1 PyYAML==6.0.2 regex==2024.9.11 requests==2.32.3 requests-oauthlib==2.0.0 rich==13.8.1 rsa==4.9 safetensors==0.4.5 scikit-learn==1.5.2 scipy==1.14.1 sentence-transformers==3.1.0 setuptools==74.1.2 shellingham==1.5.4 six==1.16.0 sniffio==1.3.1 starlette==0.38.5 sympy==1.13.2 tenacity==8.5.0 threadpoolctl==3.5.0 tiktoken==0.7.0 tokenizers==0.19.1 torch==2.4.1 tqdm==4.66.5 transformers==4.44.2 typer==0.12.5 typing_extensions==4.12.2 urllib3==2.2.3 uvicorn==0.30.6 watchfiles==0.24.0 websocket-client==1.8.0 websockets==13.0.1 wrapt==1.16.0 zipp==3.20.1 |
※ pip install langchain-huggingface