■ tight_layout/show 함수를 사용해 허깅페이스 데이터셋의 이미지를 표시하는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import os from datasets import load_dataset from matplotlib import pyplot as plt iterableDataset = load_dataset(path = "detection-datasets/coco", name = "default", split = "train", streaming = True) IMAGE_DOWNLOAD_DIRECTORY = "temp" IMAGE_COUNT = 20 imageColumnCount = 5 imageRowCount = IMAGE_COUNT // imageColumnCount figure, axesNDArray = plt.subplots(imageRowCount, imageColumnCount, figsize = (imageRowCount * 2, imageColumnCount * 2)) axesNDArray = axesNDArray.flatten() generator = iter(iterableDataset) os.makedirs(IMAGE_DOWNLOAD_DIRECTORY, exist_ok = True) for i in range(IMAGE_COUNT): dataDictionary = next(generator) jpegImageFile = dataDictionary["image"] labelInteger = dataDictionary["objects"]["category"][0] axesNDArray[i].imshow(jpegImageFile) axesNDArray[i].set_title(labelInteger, fontsize = 8) axesNDArray[i].axis("off") jpegImageFile.save(f"{IMAGE_DOWNLOAD_DIRECTORY}/{i}.jpg") plt.tight_layout() plt.show() |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
aiohappyeyeballs==2.4.4 aiohttp==3.11.11 aiosignal==1.3.2 annotated-types==0.7.0 anyio==4.8.0 asgiref==3.8.1 async-timeout==4.0.3 attrs==24.3.0 backoff==2.2.1 bcrypt==4.2.1 build==1.2.2.post1 cachetools==5.5.0 certifi==2024.12.14 charset-normalizer==3.4.1 chroma-hnswlib==0.7.6 chromadb==0.5.23 click==8.1.8 coloredlogs==15.0.1 contourpy==1.3.1 cycler==0.12.1 dataclasses-json==0.6.7 datasets==3.2.0 Deprecated==1.2.15 dill==0.3.8 distro==1.9.0 durationpy==0.9 exceptiongroup==1.2.2 fastapi==0.115.6 filelock==3.16.1 flatbuffers==24.12.23 fonttools==4.55.3 frozenlist==1.5.0 fsspec==2024.9.0 google-auth==2.37.0 googleapis-common-protos==1.66.0 greenlet==3.1.1 grpcio==1.69.0 h11==0.14.0 httpcore==1.0.7 httptools==0.6.4 httpx==0.28.1 httpx-sse==0.4.0 huggingface-hub==0.27.1 humanfriendly==10.0 idna==3.10 importlib_metadata==8.5.0 importlib_resources==6.5.2 jiter==0.8.2 jsonpatch==1.33 jsonpointer==3.0.0 kiwisolver==1.4.8 kubernetes==31.0.0 langchain==0.3.14 langchain-chroma==0.2.0 langchain-community==0.3.14 langchain-core==0.3.29 langchain-openai==0.3.0 langchain-text-splitters==0.3.5 langsmith==0.2.10 markdown-it-py==3.0.0 marshmallow==3.25.1 matplotlib==3.10.0 mdurl==0.1.2 mmh3==5.0.1 monotonic==1.6 mpmath==1.3.0 multidict==6.1.0 multiprocess==0.70.16 mypy-extensions==1.0.0 numpy==1.26.4 oauthlib==3.2.2 onnxruntime==1.20.1 openai==1.59.7 opentelemetry-api==1.29.0 opentelemetry-exporter-otlp-proto-common==1.29.0 opentelemetry-exporter-otlp-proto-grpc==1.29.0 opentelemetry-instrumentation==0.50b0 opentelemetry-instrumentation-asgi==0.50b0 opentelemetry-instrumentation-fastapi==0.50b0 opentelemetry-proto==1.29.0 opentelemetry-sdk==1.29.0 opentelemetry-semantic-conventions==0.50b0 opentelemetry-util-http==0.50b0 orjson==3.10.14 overrides==7.7.0 packaging==24.2 pandas==2.2.3 pillow==11.1.0 posthog==3.8.3 propcache==0.2.1 protobuf==5.29.3 pyarrow==18.1.0 pyasn1==0.6.1 pyasn1_modules==0.4.1 pydantic==2.10.5 pydantic-settings==2.7.1 pydantic_core==2.27.2 Pygments==2.19.1 pyparsing==3.2.1 PyPika==0.48.9 pyproject_hooks==1.2.0 python-dateutil==2.9.0.post0 python-dotenv==1.0.1 pytz==2024.2 PyYAML==6.0.2 regex==2024.11.6 requests==2.32.3 requests-oauthlib==2.0.0 requests-toolbelt==1.0.0 rich==13.9.4 rsa==4.9 shellingham==1.5.4 six==1.17.0 sniffio==1.3.1 SQLAlchemy==2.0.37 starlette==0.41.3 sympy==1.13.3 tenacity==9.0.0 tiktoken==0.8.0 tokenizers==0.20.3 tomli==2.2.1 tqdm==4.67.1 typer==0.15.1 typing-inspect==0.9.0 typing_extensions==4.12.2 tzdata==2024.2 urllib3==2.3.0 uvicorn==0.34.0 uvloop==0.21.0 watchfiles==1.0.4 websocket-client==1.8.0 websockets==14.1 wrapt==1.17.2 xxhash==3.5.0 yarl==1.18.3 zipp==3.21.0 |
※ pip install datasets matplotlib 명령을 실행했다.