■ TimeWeightedVectorStoreRetriever 클래스를 사용해 높은 감쇠율로 문서를 검색하는 방법을 보여준다.
※ 높은 감소율(예 : 9가 여러 개)에서는 최근성 점수가 빠르게 0으로 떨어진다!
※ 이 값을 1로 설정하면 모든 객체에 대한 최근성은 0이 되며, 이는 다시 벡터 조회와 동일하다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import faiss from langchain_openai import OpenAIEmbeddings from langchain_community.docstore import InMemoryDocstore from langchain_community.vectorstores import FAISS from langchain.retrievers import TimeWeightedVectorStoreRetriever from datetime import datetime from datetime import timedelta from langchain_core.documents import Document openAIEmbeddings = OpenAIEmbeddings() embeddingSize = 1536 indexFlatL2 = faiss.IndexFlatL2(embeddingSize) inMemoryDocstore = InMemoryDocstore({}) faiss = FAISS(openAIEmbeddings, indexFlatL2, inMemoryDocstore, {}) timeWeightedVectorStoreRetriever = TimeWeightedVectorStoreRetriever(vectorstore = faiss, decay_rate = 0.999, k = 1) yesterday = datetime.now() - timedelta(days = 1) timeWeightedVectorStoreRetriever.add_documents([Document(page_content = "hello world", metadata = {"last_accessed_at" : yesterday})]) timeWeightedVectorStoreRetriever.add_documents([Document(page_content = "hello foo")]) resultDocumentList = timeWeightedVectorStoreRetriever.get_relevant_documents("hello world") for resultDocument in resultDocumentList: print(resultDocument) |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
aiohappyeyeballs==2.4.0 aiohttp==3.10.5 aiosignal==1.3.1 annotated-types==0.7.0 anyio==4.4.0 attrs==24.2.0 certifi==2024.8.30 charset-normalizer==3.3.2 colorama==0.4.6 dataclasses-json==0.6.7 distro==1.9.0 faiss-cpu==1.8.0.post1 frozenlist==1.4.1 greenlet==3.1.0 h11==0.14.0 httpcore==1.0.5 httpx==0.27.2 idna==3.10 jiter==0.5.0 jsonpatch==1.33 jsonpointer==3.0.0 langchain==0.3.0 langchain-community==0.3.0 langchain-core==0.3.0 langchain-openai==0.2.0 langchain-text-splitters==0.3.0 langsmith==0.1.121 marshmallow==3.22.0 multidict==6.1.0 mypy-extensions==1.0.0 numpy==1.26.4 openai==1.45.1 orjson==3.10.7 packaging==24.1 pydantic==2.9.1 pydantic-settings==2.5.2 pydantic_core==2.23.3 python-dotenv==1.0.1 PyYAML==6.0.2 regex==2024.9.11 requests==2.32.3 sniffio==1.3.1 SQLAlchemy==2.0.35 tenacity==8.5.0 tiktoken==0.7.0 tqdm==4.66.5 typing-inspect==0.9.0 typing_extensions==4.12.2 urllib3==2.2.3 yarl==1.11.1 |
※ pip install langchain-community langchain-openai faiss-cpu 명령을 실행했다.