■ StructuredTool 클래스의 from_function 정적 메소드에서 args_schema 인자를 사용해 BaseModel 객체를 설정하는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from pydantic import BaseModel from pydantic import Field from langchain_core.tools import StructuredTool class CalculatorModel(BaseModel): a : int = Field(description = "first number" ) b : int = Field(description = "second number") def multiply(a : int, b : int) -> int: """Multiply two numbers.""" return a * b calculatorTool = StructuredTool.from_function( func = multiply, name = "Calculator", description = "multiply numbers", args_schema = CalculatorModel, return_direct = True, ) print(calculatorTool.invoke({"a" : 2, "b" : 3})) print(calculatorTool.name ) print(calculatorTool.description) print(calculatorTool.args ) """ 6 Calculator multiply numbers {'a': {'description': 'first number', 'title': 'A', 'type': 'integer'}, 'b': {'description': 'second number', 'title': 'B', 'type': 'integer'}} """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
aiohappyeyeballs==2.4.0 aiohttp==3.10.5 aiosignal==1.3.1 annotated-types==0.7.0 anyio==4.4.0 attrs==24.2.0 certifi==2024.8.30 charset-normalizer==3.3.2 frozenlist==1.4.1 greenlet==3.1.0 h11==0.14.0 httpcore==1.0.5 httpx==0.27.2 idna==3.10 jsonpatch==1.33 jsonpointer==3.0.0 langchain==0.3.0 langchain-core==0.3.1 langchain-text-splitters==0.3.0 langsmith==0.1.122 multidict==6.1.0 numpy==1.26.4 orjson==3.10.7 packaging==24.1 pydantic==2.9.2 pydantic_core==2.23.4 PyYAML==6.0.2 requests==2.32.3 sniffio==1.3.1 SQLAlchemy==2.0.35 tenacity==8.5.0 typing_extensions==4.12.2 urllib3==2.2.3 yarl==1.11.1 |
※ pip install langchain 명령을 실행했다.