■ RunnableWithMessageHistory 클래스의 invoke 메소드를 사용해 채팅하는 방법을 보여준다.
※ OPENAI_API_KEY 환경 변수 값은 .env 파일에 정의한다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
from dotenv import load_dotenv from langchain_openai import ChatOpenAI from langchain_core.tools import tool from langchain_core.prompts import ChatPromptTemplate from langchain.agents import create_tool_calling_agent from langchain.agents import AgentExecutor from langchain_core.chat_history import InMemoryChatMessageHistory from langchain_core.runnables.history import RunnableWithMessageHistory load_dotenv() chatOpenAI = ChatOpenAI(model = "gpt-4o") @tool def magicFunction(input : int) -> int: """Applies a magic function to an input.""" return input + 2 toolList = [magicFunction] chatPromptTemplate = ChatPromptTemplate.from_messages( [ ("system" , "You are a helpful assistant."), ("placeholder", "{chat_history}" ), ("human" , "{input}" ), ("placeholder", "{agent_scratchpad}" ) ] ) runnableSequence = create_tool_calling_agent(chatOpenAI, toolList, chatPromptTemplate) agentExecutor = AgentExecutor(agent = runnableSequence, tools = toolList) inMemoryChatMessageHistory = InMemoryChatMessageHistory(session_id = "test-session") runnableWithMessageHistory = RunnableWithMessageHistory( agentExecutor, lambda session_id : inMemoryChatMessageHistory, input_messages_key = "input", history_messages_key = "chat_history" ) configurationDictionary = {"configurable" : {"session_id" : "test-session"}} responseDictionary1 = runnableWithMessageHistory.invoke({"input" : "Hi, I'm polly! What's the output of magic_function of 3?"}, configurationDictionary) outputString1 = responseDictionary1["output"] print(outputString1) print("-" * 100) responseDictionary2 = runnableWithMessageHistory.invoke({"input" : "Remember my name?"}, configurationDictionary) outputString2 = responseDictionary2["output"] print(outputString2) print("-" * 100) responseDictionary3 = runnableWithMessageHistory.invoke({"input": "what was that output again?"}, configurationDictionary) outputString3 = responseDictionary3["output"] print(outputString3) """ Hello Polly! The output of the magic function for the input 3 is 5. |
Yes, you mentioned your name is Polly!
—————————————————————————————————-
The output of the magic function for the input 3 is 5.
"""
—————————————————————————————————-
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
aiohappyeyeballs==2.4.3 aiohttp==3.10.10 aiosignal==1.3.1 annotated-types==0.7.0 anyio==4.6.0 async-timeout==4.0.3 attrs==24.2.0 certifi==2024.8.30 charset-normalizer==3.4.0 distro==1.9.0 exceptiongroup==1.2.2 frozenlist==1.4.1 greenlet==3.1.1 h11==0.14.0 httpcore==1.0.6 httpx==0.27.2 idna==3.10 jiter==0.6.1 jsonpatch==1.33 jsonpointer==3.0.0 langchain==0.3.3 langchain-core==0.3.10 langchain-openai==0.2.2 langchain-text-splitters==0.3.0 langsmith==0.1.134 multidict==6.1.0 numpy==1.26.4 openai==1.51.2 orjson==3.10.7 packaging==24.1 propcache==0.2.0 pydantic==2.9.2 pydantic_core==2.23.4 python-dotenv==1.0.1 PyYAML==6.0.2 regex==2024.9.11 requests==2.32.3 requests-toolbelt==1.0.0 sniffio==1.3.1 SQLAlchemy==2.0.35 tenacity==8.5.0 tiktoken==0.8.0 tqdm==4.66.5 typing_extensions==4.12.2 urllib3==2.2.3 yarl==1.14.0 |
※ pip install python-dotenv langchain langchain-openai 명령을 실행했다.