■ 커스텀 출력 파서를 만드는 방법을 보여준다.
※ OPENAI_API_KEY 환경 변수 값은 .env 파일에 정의한다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import re import json from dotenv import load_dotenv from pydantic import BaseModel from pydantic import Field from typing import List from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from langchain_core.messages import AIMessage load_dotenv() class Person(BaseModel): """Information about a person.""" name : str = Field(..., description = "The name of the person" ) height_in_meters : float = Field(..., description = "The height of the person expressed in meters.") class People(BaseModel): """Identifying information about all people in a text.""" people : List[Person] chatPromptTemplate1 = ChatPromptTemplate.from_messages( [ ("system", "Answer the user query. Output your answer as JSON that matches the given schema: ```json\n{schema}\n```. Make sure to wrap the answer in ```json and ``` tags"), ("human" , "{query}"), ] ) chatPromptTemplate2 = chatPromptTemplate1.partial(schema = People.model_json_schema()) chatOpenAI = ChatOpenAI(model = "gpt-4o-mini") def extractJSON(aiMessage : AIMessage) -> List[dict]: """Extracts JSON content from a string where JSON is embedded between ```json and ``` tags. Parameters : text (str) : The text containing the JSON content. Returns : list : A list of extracted JSON strings. """ text = aiMessage.content # JSON 블록과 일치하도록 정규 표현식 패턴을 정의한다. pattern = r"```json(.*?)```" # 문자열에서 패턴의 겹치지 않는 모든 일치 항목을 찾는다. matcheStringList = re.findall(pattern, text, re.DOTALL) # 앞이나 뒤의 공백을 제거하고 일치하는 JSON 문자열 목록을 반환한다. try: return [json.loads(matchString.strip()) for matchString in matcheStringList] except Exception: raise ValueError(f"Failed to parse: {aiMessage}") runnableSequence = chatPromptTemplate2 | chatOpenAI | extractJSON responsePeopleList = runnableSequence.invoke({"query" : "Anna is 23 years old and she is 6 feet tall"}) print(responsePeopleList) """ [{'people': [{'name': 'Anna', 'height_in_meters': 1.8288}]}] """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
annotated-types==0.7.0 anyio==4.7.0 certifi==2024.8.30 charset-normalizer==3.4.0 colorama==0.4.6 distro==1.9.0 h11==0.14.0 httpcore==1.0.7 httpx==0.28.1 idna==3.10 jiter==0.8.0 jsonpatch==1.33 jsonpointer==3.0.0 langchain-core==0.3.22 langchain-openai==0.2.11 langsmith==0.1.147 openai==1.57.0 orjson==3.10.12 packaging==24.2 pydantic==2.10.3 pydantic_core==2.27.1 python-dotenv==1.0.1 PyYAML==6.0.2 regex==2024.11.6 requests==2.32.3 requests-toolbelt==1.0.0 sniffio==1.3.1 tenacity==9.0.0 tiktoken==0.8.0 tqdm==4.67.1 typing_extensions==4.12.2 urllib3==2.2.3 |
※ pip install python-dotenv langchain-openai 명령을 실행했다.