■ 비스트리밍 구성 요소로 구성된 LCEL 체인에서 마지막 비스트리밍 단계 이후 부분 출력을 스트리밍하는 방법을 보여준다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import os from langchain_core.prompts import ChatPromptTemplate from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI from langchain_core.output_parsers import StrOutputParser os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>" chatPromptTemplateString = """Answer the question based only on the following context : {context} Question : {question} """ chatPromptTemplate = ChatPromptTemplate.from_template(chatPromptTemplateString) faiss = FAISS.from_texts( ["harrison worked at kensho", "harrison likes spicy food"], embedding = OpenAIEmbeddings(), ) vectorStoreRetriever = faiss.as_retriever() chatOpenAI = ChatOpenAI(model = "gpt-3.5-turbo-0125") runnableSequence = ( { "context" : vectorStoreRetriever.with_config(run_name = "Docs"), "question" : RunnablePassthrough() } | chatPromptTemplate | chatOpenAI | StrOutputParser() ) for chunkString in runnableSequence.stream("Where did harrison work? Write 3 made up sentences about this place."): print(chunkString, end = "", flush = True) print() """ Harrison worked at a trendy tech start-up called Kensho located in the heart of Silicon Valley. The office had a sleek and modern design, with open workspaces and collaborative areas for brainstorming. At Kensho, employees enjoyed perks like catered lunches, ping pong tables, and regular team-building activities. """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
aiohttp==3.9.5 aiosignal==1.3.1 annotated-types==0.7.0 anyio==4.4.0 async-timeout==4.0.3 attrs==23.2.0 certifi==2024.6.2 charset-normalizer==3.3.2 dataclasses-json==0.6.7 distro==1.9.0 exceptiongroup==1.2.1 faiss-gpu==1.7.2 frozenlist==1.4.1 greenlet==3.0.3 h11==0.14.0 httpcore==1.0.5 httpx==0.27.0 idna==3.7 jsonpatch==1.33 jsonpointer==3.0.0 langchain==0.2.5 langchain-community==0.2.5 langchain-core==0.2.8 langchain-openai==0.1.8 langchain-text-splitters==0.2.1 langsmith==0.1.79 marshmallow==3.21.3 multidict==6.0.5 mypy-extensions==1.0.0 numpy==1.26.4 openai==1.34.0 orjson==3.10.5 packaging==24.1 pydantic==2.7.4 pydantic_core==2.18.4 PyYAML==6.0.1 regex==2024.5.15 requests==2.32.3 sniffio==1.3.1 SQLAlchemy==2.0.30 tenacity==8.4.1 tiktoken==0.7.0 tqdm==4.66.4 typing-inspect==0.9.0 typing_extensions==4.12.2 urllib3==2.2.2 yarl==1.9.4 |
※ pip install langchain langchain-community langchain-openai faiss-gpu 명령을 실행했다.