[PYTHON/LANGCHAIN] trim_messages 함수 : strategy/max_tokens/token_counter 인자를 사용해 RunnableLambda 객체 만들기
■ trim_messages 함수의 strategy/max_tokens/token_counter 인자를 사용해 RunnableLambda 객체를 만드는 방법을 보여준다. ※ OPENAI_API_KEY 환경 변수 값은 .env 파일에 정의한다. ▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
from dotenv import load_dotenv from langchain_core.messages import trim_messages from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from langchain_core.runnables import RunnablePassthrough from operator import itemgetter from langchain_community.chat_message_histories import ChatMessageHistory from langchain_core.runnables.history import RunnableWithMessageHistory load_dotenv() runnableLambda = trim_messages(strategy = "last", max_tokens = 2, token_counter = len) chatPromptTemplate = ChatPromptTemplate.from_messages( [ ("system" , "You are a helpful assistant. Answer all questions to the best of your ability."), ("placeholder", "{chat_history}"), ("human" , "{input}") ] ) chatOpenAI = ChatOpenAI(model = "gpt-4o-mini") runnableSequence = RunnablePassthrough.assign(chat_history = itemgetter("chat_history") | runnableLambda) | chatPromptTemplate | chatOpenAI chatMessageHistory = ChatMessageHistory() chatMessageHistory.add_user_message("Hey there! I'm Nemo.") chatMessageHistory.add_ai_message("Hello!") chatMessageHistory.add_user_message("How are you today?") chatMessageHistory.add_ai_message("Fine thanks!") runnableWithMessageHistory = RunnableWithMessageHistory( runnableSequence, lambda session_id : chatMessageHistory, input_messages_key = "input", history_messages_key = "chat_history", ) responseMessage1 = runnableWithMessageHistory.invoke( {"input" : "What's my name?"}, {"configurable" : {"session_id" : "unused"}} ) print(responseMessage1.content) print("-" * 50) responseMessage2 = runnableWithMessageHistory.invoke( {"input" : "Where does P. Sherman live?"}, {"configurable" : {"session_id" : "unused"}} ) print(responseMessage2.content) print("-" * 50) """ I'm sorry, but I don't know your name. If you'd like to share it, feel free! -------------------------------------------------- P. Sherman lives at 42 Wallaby Way, Sydney. This is a reference from the animated movie "Finding Nemo." -------------------------------------------------- """ |