■ RunnableGenerator 클래스를 사용해 Iterable 입출력 인자를 갖는 커스텀 함수를 명시적으로 감싸는 방법을 보여준다.
※ OPENAI_API_KEY 환경 변수 값은 .env 파일에 정의한다.
▶ main.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
from typing import Iterable from dotenv import load_dotenv from langchain_openai import ChatOpenAI from langchain_core.messages import AIMessageChunk from langchain_core.runnables import RunnableGenerator load_dotenv() chatOpenAI = ChatOpenAI() def parseStreamingMessage(chunks : Iterable[AIMessageChunk]) -> Iterable[str]: for chunk in chunks: yield chunk.content.swapcase() runnableSequence = chatOpenAI | RunnableGenerator(parseStreamingMessage) for chunkString in runnableSequence.stream("tell me about yourself in one sentence"): print(chunkString, end = "", flush = True) """ i AM A CURIOUS AND CREATIVE INDIVIDUAL WHO IS ALWAYS SEEKING NEW EXPERIENCES AND CHALLENGES. """ |
▶ requirements.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
aiohttp==3.9.5 aiosignal==1.3.1 annotated-types==0.7.0 anyio==4.4.0 async-timeout==4.0.3 attrs==23.2.0 certifi==2024.6.2 charset-normalizer==3.3.2 distro==1.9.0 exceptiongroup==1.2.1 frozenlist==1.4.1 greenlet==3.0.3 h11==0.14.0 httpcore==1.0.5 httpx==0.27.0 idna==3.7 jsonpatch==1.33 jsonpointer==3.0.0 langchain==0.2.6 langchain-core==0.2.10 langchain-openai==0.1.10 langchain-text-splitters==0.2.2 langsmith==0.1.82 multidict==6.0.5 numpy==1.26.4 openai==1.35.5 orjson==3.10.5 packaging==24.1 pydantic==2.7.4 pydantic_core==2.18.4 python-dotenv==1.0.1 PyYAML==6.0.1 regex==2024.5.15 requests==2.32.3 sniffio==1.3.1 SQLAlchemy==2.0.31 tenacity==8.4.2 tiktoken==0.7.0 tqdm==4.66.4 typing_extensions==4.12.2 urllib3==2.2.2 yarl==1.9.4 |
※ pip install python-dotenv langchain langchain-openai 명령을 실행했다.